Xtralis VESDA
Pipe Network
Installation Guide

Document Number: 10255_05
Part Number: 30008
Intellectual Property and Copyright

This document includes registered and unregistered trademarks. All trademarks displayed are the trademarks of their respective owners. Your use of this document does not constitute or create a licence or any other right to use the name and/or trademark and/or label. This document is subject to copyright owned by Xtralis AG (“Xtralis”). You agree not to copy, communicate to the public, adapt, distribute, transfer, sell, modify or publish any contents of this document without the express prior written consent of Xtralis.

Disclaimer

The contents of this document is provided on an “as is” basis. No representation or warranty, whether express or implied, is made as to the completeness, accuracy or reliability of the contents of this document. The manufacturer reserves the right to change designs or specifications without obligation and without further notice. Except as otherwise provided, all warranties, express or implied, including without limitation any implied warranties of merchantability and fitness for a particular purpose are expressly excluded.

General Warning

This product must only be installed, configured and used strictly in accordance with the General Terms and Conditions, User Manual and product documents available from Xtralis. All proper health and safety precautions must be taken during the installation, commissioning and maintenance of the product. The system should not be connected to a power source until all the components have been installed. Proper safety precautions must be taken during tests and maintenance of the products when these are still connected to the power source. Failure to do so or tampering with the electronics inside the products can result in an electric shock causing injury or death and may cause equipment damage. Xtralis is not responsible and cannot be held accountable for any liability that may arise due to improper use of the equipment and/or failure to take proper precautions. Only persons trained through an Xtralis accredited training course can install, test and maintain the system.

Liability

You agree to install, configure and use the products strictly in accordance with the User Manual and product documents available from Xtralis. Xtralis is not liable to you or any other person for incidental, indirect, or consequential loss, expense or damages of any kind including without limitation, loss of business, loss of profits or loss of data arising out of your use of the products. Without limiting this general disclaimer, the following specific warnings and disclaimers also apply:

Fitness for Purpose

You agree that you have been provided with a reasonable opportunity to appraise the products and have made your own independent assessment of the fitness or suitability of the products for your purpose. You acknowledge that you have not relied on any oral or written information, representation or advice given by or on behalf of Xtralis or its representatives.

Total Liability

To the fullest extent permitted by law that any limitation or exclusion cannot apply, the total liability of Xtralis in relation to the products is limited to:
(i) in the case of services, the cost of having the services supplied again; or
(ii) in the case of goods, the lowest cost of replacing the goods, acquiring equivalent goods or having the goods repaired.

Indemnification

You agree to fully indemnify and hold Xtralis harmless for any claim, cost, demand or damage (including legal costs on a full indemnity basis) incurred or which may be incurred arising from your use of the products.

Miscellaneous

If any provision outlined above is found to be invalid or unenforceable by a court of law, such invalidity or unenforceability will not affect the remainder which will continue in full force and effect. All rights not expressly granted are reserved.
Document Conventions
The following typographic conventions are used in this document.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Bold** | Used to denote: emphasis
 | Used for names of menus, menu options, toolbar buttons |
| **Italics**| Used to denote: references to other parts of this document or other documents. Used for the result of an action. |

The following icons are used in this document

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caution: This icon is used to indicate that there is a danger to equipment. The danger could be loss of data, physical damage, or permanent corruption of configuration details.</td>
</tr>
<tr>
<td></td>
<td>Warning: This icon is used to indicate that there is a danger of electric shock. This may lead to death or permanent injury.</td>
</tr>
<tr>
<td></td>
<td>Warning: This icon is used to indicate that there is a danger of inhaling dangerous substances. This may lead to death or permanent injury.</td>
</tr>
</tbody>
</table>

Contact Us

<table>
<thead>
<tr>
<th>Region</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Americas</td>
<td>+1 781 740 2223</td>
</tr>
<tr>
<td>Asia</td>
<td>+852 2297 2438</td>
</tr>
<tr>
<td>Australia and New Zealand</td>
<td>+61 3 9936 7000</td>
</tr>
<tr>
<td>Continental Europe</td>
<td>+41 55 285 99 99</td>
</tr>
<tr>
<td>UK and the Middle East</td>
<td>+44 1442 242 330</td>
</tr>
</tbody>
</table>

www.xtralis.com
Codes and Standards Information for Air Sampling Smoke Detection

We strongly recommend that this document is read in conjunction with the appropriate local codes and standards for smoke detection and electrical connections. This document contains generic product information and some sections may not comply with all local codes and standards. In these cases, the local codes and standards must take precedence. The information below was correct at time of printing but may now be out of date, check with your local codes, standards and listings for the current restrictions.

FCC Compliance Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, the user is encouraged to try to correct the interference by one or more of the following measures; re-orientate or relocate the receiving antenna, increase the separation between the equipment and receiver, connect the equipment to a power outlet which is on a different power circuit to the receiver or consult the dealer or an experienced radio/television technician for help.

FDA

This VESDA product incorporates a laser device and is classified as a Class 1 laser product that complies with FDA regulations 21 CFR 1040.10. The laser is housed in a sealed detector chamber and contains no serviceable parts. The laser emits invisible light and can be hazardous if viewed with the naked eye. Under no circumstances should the detector chamber be opened.

FM

3611 Hazardous Approval Warning: Exposure to some chemicals may degrade the sealing of relays used on the detector. Relays used on the detector are marked “TX2-5V”, “G6S-2-5V” or “EC2-5NU”. VESDA detectors must not be connected or disconnected to a PC while the equipment is powered in an FM Division 2 hazardous (classified) location (defined by FM 3611).

FM Approved Applications

The product must be powered from VPS-100US-120, VPS-100US-220 or VPS-220 only.

ONORM F3014

ONORM F3014, transport times for all tubes (including capillaries) must not exceed 60 seconds from any hole. This means that the pre-designed pipe networks that include capillaries cannot be used.

AS1603.8

The performance of this product is dependent upon the configuration of the pipe network. Any extensions or modifications to the pipe network may cause the product to stop working correctly. You must check that ASPIRE2 approves alterations before making any changes. ASPIRE2 is available from your VESDA ASD distributor.

AS1851.1 2005

Maintenance Standards. Wherever this document and the AS1851.1 differ, AS1851.1 should be followed in preference to this document.

European Installations

The product must use a power supply conforming to EN54: Part 4.

Document Number: 10255_05
Part Number: 30008
1 Scope

The Xtralis VESDA Pipe Network Installation Guide is written for those involved with the design specifications, management, installation and maintenance of an Xtralis VESDA system. It is assumed that those using this guide will have knowledge of the local codes and standards. It is recommended that pipe network installers attend an Xtralis VESDA approved training course.

2 Introduction

The Xtralis VESDA system is an aspirated smoke detection system. It is dependent upon a properly designed and installed air sampling pipe network. Pipe network design has been explained in the Xtralis VESDA Pipe Network Design Guide. This guide instructs the reader on how to install an efficient air sampling pipe network. It informs the reader about the components used in a pipe network installation and guidelines in their application. Procedures for some of the more common installations are explained.

Installation should be performed after the site survey and ASPIRE2 modelling have finished. Once the installation is finished you can move on to commissioning the Xtralis VESDA system. This step requires you to install the pipework as specified in design documents and record any changes to the plan that you are required to make. These details will be included in the handover documentation which will be given to the customer when the system is commissioned.

Introduction to Pipe Network

Xtralis VESDA’s early warning aspirating smoke detection system collects air samples through sampling holes on a network of pipes. The airflow within a protected area carries the air samples to the sampling holes. Conventional smoke detectors wait for the smoke to migrate through the detector, Xtralis VESDA actively draws air samples into the sampling system. These samples are transported through the pipe network to the Xtralis VESDA detector.

![Diagram of Xtralis VESDA air sampling system](image)

Legend

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Cap with hole</td>
<td>Air samples</td>
<td>Airflow entering a sampling hole</td>
<td>Air sampling pipe</td>
<td>Xtralis VESDA detector</td>
</tr>
</tbody>
</table>

Figure 1 - Xtralis VESDA air sampling system
3 Installation Steps

These instructions are the basic sequence of steps you will be required to perform when installing an Xtralis VESDA pipe network. Information on installing into a range of environments is covered in depth in Installing Pipe Networks on page 11. Information on the theory of good pipe network design can be found in the Xtralis VESDA Pipe Network Design Guide.

The normal procedure for installation is:

1. Check the design documents to gather information on the size and configuration of the pipes. The design documents could include, pipe network design specifications, an ASPIRE2 Installation Data Pack (IDP), or a VLF pre-engineered design.
2. Mark the spots where the detector is to be installed.
3. Measure and mark the spots for pipe mounting clips as per the design documents.
4. Install the detector. For further information refer to the detector documentation.
5. Install the mounting clips as per the design documents.
6. Mount and join the pipes onto the clips, as per the guide lines in Mounting on page 9. Do not glue the pipes at this stage.
7. Drill sampling holes in the pipe ensuring that the spacing between sampling holes is as per the design documents and the holes are at the correct orientation.
8. Check if the design documents require end caps with holes. Install as required.
9. Run the pipe to the detector.
10. Insert the pipes into the detector ensuring there is a minimum of 500 mm (20 in.) of straight pipe before the pipe enters the detector. Do not glue the pipes to the detector manifold.
11. Update the design documents with any changes that may have been made to the original plan. If the installed system is significantly different to the original plan you may need to use ASPIRE2 to check that the new design will actually work.
12. After all the tests have been completed bond the pipes together using the appropriate cement solvent. Do not glue the pipes running into the detector manifold, if you do it may not be possible to service the detector.
13. Use appropriate labels and tag the sampling pipe and sampling holes.
14. Update the design documents with any further changes that may have been made during the tests, and give a copy of the updated design documents to the person who will be commissioning the system.

4 Components of a Pipe Network

This section describes various components used in constructing a pipe network and guide lines that should be observed in using these components. It is unlikely that all the components mentioned here will be used in every installation and certain projects may require components other than those mentioned here.

Pipe Line

The sampling pipe used for the pipe network is normally a low cost 19 mm to 25 mm (0.75 to 1 in) ID PVC pipe. We recommend the use of ABS 21 mm (0.83 inch) ID, smooth bore pipe. The internal diameter for the pipes may vary depending upon design requirements. The sampling pipe used must also comply with local codes and standards.

Figure 2 - A section of Xtralis VESDA pipe
Couplings, Socket Unions and Expansion Joints

Couplings, socket unions, and expansion joints are used to connect pipes together.

Figure 3 - Coupling joint (A) and socket unions (B)

For information on expansion joints see Expansion joints on page 9.

Couplings are the usual way to connect two pieces of pipe.

Socket unions are typically used where the pipes may have to be periodically dismantled for maintenance. Socket unions are also used where it is important to have the correct orientation of sampling holes (i.e. sampling pipes over air grilles).

Expansion joints are used in environments where pipes are likely to expand and contract due to variation in temperature (i.e. sampling pipes in refrigerated warehouses).

Bends and Elbows

Bends and elbows are used to change the direction of the pipe. Bends having a wider radius are preferred, though elbows are also acceptable.

Figure 4 - A wide radius bend (A), 45° bend (B), and 90° elbow (C)
Tees, Y-Pieces and J-Pieces

Tees, Y-Pieces and J-Pieces are used for branching a sampling pipe or for attaching capillaries and drop pipes to the air sampling pipe.

![Tees, Y-Pieces and J-Pieces](image)

Figure 5 - Y adaptor (A), Tee (B) and J-Piece (C)

Note: It is important that the air sampling pipe is branched in the direction away from the detector.

Reducing Connectors

Reducing connectors are used to attach pipes having different internal/outer diameters. These are typically used to connect capillary tubes and drop pipes to the sampling pipe.

Pipe Adaptors

The pipe adaptor is used to connect imperial size pipes to the detectors pipe inlet manifold. All detectors shipped to U.S.A. include pipe adaptors.

End Caps

The sampling pipe end away from the detector is typically capped by an endcap. End caps serve a dual purpose of controlling the airflow and not permitting any contaminants from entering the pipe network. A hole is drilled into the end cap to control the airflow. The size of the endcap hole depends upon the required airflow and can be calculated by using ASPIRE2 - Xtralis VESDA’s Pipe Modelling Software (refer to the [ASPIRE2 User Guide](#) for details).
Capillary Tubes and Drop Pipes

Capillary tubes are lengths of flexible tubing that are connected to the sampling pipe. Capillary tubes are typically used to sample air away from the air sampling pipe, or in instances where focused air sampling is required. Capillary sampling is used for in-cabinet sampling and in instances where the sampling pipe requires to be concealed from the sampling area. Drop pipes are a variation of the capillary tube. It is a rigid PVC pipe and is used for the same purpose as the capillary sampling.

![Diagram of capillary tube and drop pipe]

Legend

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tee adaptor</td>
<td>Sampling pipe</td>
<td>Reducing connector</td>
<td>Capillary tube</td>
<td>Flush sampling point</td>
<td>Miniature sampling point</td>
</tr>
</tbody>
</table>

Miniature Sampling Points

Miniature sampling points are attached to the sampling end of capillary tubes. There are two types of miniature sampling points:

Conical sampling points

Local codes and standards normally specify the minimum distance from the ceiling for air sampling. The conical sampling points meet these requirements and is more commonly selected as a miniature sampling point.

Flush Sampling Points

Flush sampling points are normally used when there is a need to conceal the pipe network. Flush sampling points may not comply with your local codes and standards. These are mostly used for performance based systems.

Mounting Fixtures

The sampling pipe is mounted using the appropriate pipe mounting options. Some of the mountings commonly used are illustrated below:

![Diagram of various pipe mounting fixtures]

Figure 6 - Pipe mounting fixtures (pipe clips, plastic ratchet, saddle strap)
Solvent Cement

Solvent cement is used to bond pipes together. It may also be used to bond pipe accessories such as couplings, socket unions, bends, elbows, tees, Y-pieces, J-pieces, and end caps to the pipe.

Labels

Sampling point labels – There are two labels to identify sampling holes:

- Miniature sampling point label – These are round labels with a hole in the centre to fit around the miniature sampling points

- Sampling point decal – This decal is wrapped around a pipe on the sampling hole. The decal has a hole in the centre. The hole in the decal must be aligned to the sampling hole drilled into the pipe.

- Pipe label – This label identifies the pipe as being a smoke detector pipe and warns against tampering with it.

5 Working with Pipes

The following guidelines will assist with the successful installation of a pipe network:

Cutting Pipes

If the pipes need to be cut use the right tools to cut the pipe. Use pipe cutting shears or wheel type plastic tube cutter. It is important that the cutting edge of the shears and cutter are sharp. Ensure that the cut is square. Square cuts provide maximum bonding area. Remove all loose plastic. Bevelling the end will make it easier to fit in to the socket and prevent solvent cement from being wiped from the joining surface during final assembly.

Note: Remember to remove all dust and shavings created when cutting the pipe as they can block sampling holes and impacts on the efficient performance of a pipe network.

Joining and Bonding

When joining the pipes ensure that the pipes are inserted all the way to the “lip” inside the coupling or adaptor. Failing to do so will create a turbulence due to expansion of space between the pipe end and the coupling lip.

Figure 7 - Turbulence created due to a gap in pipe coupling

All joints (except the joint to the detector) should be bonded using appropriate solvent cement. It is advisable to bond the joints only after the final tests have been completed and required adjustments have been made.
Cementing Pipes Together

Bonding, cementing or gluing pipes is all done using the same process. Apply your glue/cement/bonding agent to the outside of the pipe and insert into the other pipe. If you were to put it on the inside of a pipe, it will build up when the other pipe is inserted. This build-up will affect the airflow characteristics inside the pipe and may cause unpredictable behavior.

You should never bond, glue or cement the pipes that connect to the detector.

Legend

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Do not apply solvent cement on the inside</td>
</tr>
<tr>
<td>B</td>
<td>Apply solvent cement on the outside</td>
</tr>
</tbody>
</table>

Figure 8 - Applying solvent cement

Where there is likelihood of high level of temperature fluctuations, use expansion joints to allow for the expansion and contraction of pipes.

Legend

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Expansion Joint</td>
</tr>
<tr>
<td>B</td>
<td>Standard pipe joint</td>
</tr>
</tbody>
</table>

Figure 9 - Expansion joints

The diagram above shows expansion (A) and standard (B) pipe joints. The diagrams at the top show how the pipe network will look at room temperature, the diagrams at the bottom show what happens after the refrigeration system has been turned on and the pipe shrinks. Note that once the standard pipe has shrunk the pipes are no longer airtight and the pipe network will not be able to detect smoke.

Mounting

The pipe network should be mounted as per the design and ASPIRE2 specifications. The fittings used for mounting will depend upon the design and site requirements.

- To minimize flexing the pipes should be secured every 1.5 m (5 ft.)
- Pipes should be suspended between 25 - 100 mm (1 - 4 inches) below the ceiling

Note: This is subject to local codes and standards and pipe network design specifications.

- When installing a pipe network in areas subject to high temperature fluctuations allow for the contraction and expansion of pipes
- Where expansion or contraction of pipes is likely either after installation or on a continuous basis, do not place pipe clips adjacent to couplings and socket unions as these may interfere with the movement of the pipe

Refer to *Ceilings and Floors* on page 11 through to *Vertical Sampling Pipe Installation* on page 24 for details on mounting requirements for specific types of installations.
Bending Pipes

Whenever possible you should use the appropriate, precast, pipe bends. Where no precast bends are available pipes can be bent within certain limits to change pipe direction or to go around small obstructions. When bending a pipe:

- Use Bending springs
- Use Pipe Benders
- Do not bend on sharp objects or heat the pipe
- Replace any pipe bends that have kinks

The ASPIRE2 modelling software is used to test if a proposed pipe network will meet customer and local authority codes and standards. Bends that are not entered onto the design will cause there to be differences between the expected pipe network performance, and the performance that will be tested during commissioning. If the changes are too great the commissioning engineer will have to investigate and may require that pipework to be replaced to meet the original specification.

Drilling Sampling Holes

Sampling holes are drilled into the pipes once the pipe network is installed.

- The ASPIRE2 Installation Data Pack (IDP) coordinates the positions of the sampling holes
- Drill sampling holes at the positions marked in the IDP
- The IDP will specify the diameter required for each sampling hole on the grid
- It is important that correct diameter sampling hole is drilled as the hole size effects the performance efficiency of the Xtralis VESDA System. The size of sampling holes may be different for each hole in a pipe network so check the size required for each hole in the IDP.
- Holes MUST be drilled at 90° to the pipe. If the drill is at an angle, the sampling hole will not be round and may effect air flows.
- The hole must only be **into** the pipe and not **through** the other side of the pipe
- The sampling hole should be drilled at slow drill speed with a sharp drill bit, to avoid dust, swarf or burrs enter the sampling pipe.

Labelling

Adhesive labels to identify the sampling pipe and the sampling holes and Sampling Points are available from Xtralis. These should be used to identify:

- The Pipes as Smoke Detector sampling pipes
- Sampling Holes
- Sampling Points

for further information on the different label types see *Labels* on page 8.

Using Capillaries and Drop Pipes

Typically a capillary is a flexible tubing having a maximum length of 8 m (26.25 ft.). To maintain an acceptable level of air flow we recommend the use of 21 mm ID pipe for drop pipes. The minimum capillary ID is 5.3 mm (0.2 inch). A variation of the capillary tube is the 12.5 m (half inch) ID rigid drop pipe. Drop pipe of up to 4 m (13 ft.) are acceptable.

Where multiple capillary tubes are used, the length for each capillary should be approximately the same. A sampling hole (suggested 2 mm (0.079 in.) diameter) is required at the end of each capillary tube or drop pipe.

All capillary tubes which are close to the limits suggested above should be checked by ASPIRE2 before installation.
6 Installing Pipe Networks

Pipe network designs are specific to a site and are dependant upon site conditions, the application, customer requirements and local codes and standards. Installing pipe networks requires knowledge of the components used, guidelines that should be followed, and an understanding of the more commonly used air sampling options. For information on the theory of pipe networks see the Xtralis VESDA Pipe Network Design Guide.

This section of the manual contains the instructions for installing pipe networks into the common types of sites. For information on installing pipe networks to specialized environments see the Xtralis VESDA Application Design Guides.

Ceilings and Floors

On ceiling

On-Ceiling installation is the most common type of installation and is often installed in a standard room not having any special requirements. The pipes are installed directly onto the ceiling of the area to be protected.

![Figure 10 - Typical on-ceiling installation](image)

The normal procedure for installing an on-ceiling pipe network is:
1. Check the design documents to gather information on the size and configuration of the pipes. The design documents could include: pipe network design specifications, an ASPIRE2 Installation Data Pack (IDP), or a VLF pre-engineered design.

2. Mark the spot where the detector is to be installed.

3. Measure and mark the spots for pipe mounting clips as per the design documents.

4. Secure the pipe mounting clips to the ceiling ensuring that the distance between the ceiling and the pipe is according to the design documents.

5. Mount and join the pipes onto the clips, as per the guidelines in Mounting on page 9. Do not glue the pipes at this stage.

6. Drill sampling holes in the pipe ensuring that the spacing between sampling holes is as per the design documents and the holes are at the correct orientation.

7. Check to see if the design documents require end caps with holes. Install as required.

8. Run the pipe to the detector.

9. Insert the pipes into the detector ensuring there is a minimum of 500 mm (20 in.) of straight pipe before the pipe enters the detector. Do not glue the pipes to the detector manifold.

10. Update the design documents with any changes that may have been made to the original plan. If the installed system is significantly different to the original plan you may need to use ASPIRE2 to check that the new design will actually work.

11. After all the tests have been completed bond the pipes together using the appropriate cement solvent. Do not glue the pipes running into the detector, if you do it may not be possible to service the detector.

12. Use appropriate labels and tag the sampling pipe and sampling holes.

13. Update the design documents with any further changes that may have been made during the tests.

In-Ceiling Installation

In-Ceiling installations are pipe networks in the ceiling void between the roof of the building and the false ceiling panels.

1. Check the design documents to gather information on the size and configuration of the pipes. The design documents could include, pipe network design specifications, an ASPIRE2 Installation Data Pack (IDP), or a VLF pre-engineered design.

2. Mark the spot where the detector is to be installed.

3. Identify and measure the spots for securing the pipe as required by the design documents and guidelines for mounting pipes (see Mounting on page 9). Ceiling joists and/or support beams can be used to secure the pipe.

4. Install the detector. See the detector documentation for details.

5. Secure the pipe using conduit clamps or nylon self-locking ties ensuring that the distance between the roof and the pipe is according to the design specifications. For further information see Mounting Fixtures on page 7.

6. When securing the pipes follow the guidelines discussed in “Joining and Bonding” on page 8. Do not glue the pipes at this stage. Special attention needs to be given to the expansion and contraction of pipes in ceiling voids, as the pipes are likely to be subjected to a higher level of temperature fluctuations. In areas of wide temperature fluctuations, it is
strongly suggested that expansion joints are used to counter the higher rates of expansion and contraction of the sampling pipe.

7. Drill sampling holes on the underside or side of the pipe ensuring that the spacing between sampling holes is as per the design documents and the holes are at the correct angle.

8. Check to see if the design documents requires end caps with a hole. Install as required.

9. Run the pipe to the detector.

10. Insert the pipes into the detector pipe inlet manifold. Refer to the relevant detector manual for further information.

11. To avoid potential effects of pressure differentials it is recommended that sampled air is exhausted from the detector back to the ceiling void.

12. Mark the design documents with any changes that may have been made during installation.

13. After all the tests have been completed bond the pipes together using the appropriate cement solvent. Do not glue the pipes running into the detector, if you do it may not be possible to service the detector.

14. Use appropriate labels and tag the sampling pipe and sampling holes (Refer to Labelling on page 10).

15. Mark the design documents with any further changes that may have been made during the tests.

Floor Void Installation

Installations in the under floor void require considerations similar to the In-Ceiling Void Installation.

![Figure 12 - Typical under floor installation](image)

The Guidelines to be followed for Floor Void Installations include:

1. Refer to the guidelines for In-ceiling installations for general guidelines.
2. Supporting posts can be used to secure the pipe.
3. As the initial smoke layer normally takes up the top 10% of the void height, pipes should be placed as close to the floor as possible.
4. Secure the pipe using conduit clamps or nylon ratchet straps ensuring that the distance between the floor and the pipe is according to the design specifications. For further information see Mounting Fixtures on page 7.

Inter-beam

Inter-beam sampling is used in areas having large beams as defined by local fire code and standards, or as per site requirements. Design documents will specify the requirement for inter-beam sampling.

The two methods for inter-beam sampling are:
Bending Pipes - Bend the sampling pipe, where the depth of the beam allows the pipe to be bent without it cracking or crinkling (Refer to *Bending Pipes* on page 10.

![Bending Pipes Diagram]

Walking Sticks - Walking sticks are attached to the sampling pipe. The walking stick is a length of riser pipe. Attach a bend or an elbow at the top end of the riser pipe. Fix an appropriate length of pipe to the bend or elbow and drill a sampling hole (as specified in the design documents) into the pipe. Close the end of the pipe with an end cap. Attach the walking stick to a Tee adaptor using a reducing connector (if required). Join the Tee to the sampling pipe at the specified spot.

![Walking Sticks Diagram]

Legend

<table>
<thead>
<tr>
<th>A</th>
<th>Sampling pipe</th>
<th>B</th>
<th>Beam pockets</th>
<th>C</th>
<th>Sampling hole</th>
</tr>
</thead>
</table>

Figure 13 - Inter-beam sampling using pipe bends

Capillary Tubes and Drop Pipes Installation

Capillary tubes and drop pipes are used to monitor the environment from areas away from the sampling pipe. Capillary tubes and drop pipes are typically used for Concealed and In-Cabinet sampling.

Guidelines for Capillary and drop pipes:

1. Install the sampling pipe using Tee adaptors where the capillary tubes or drop pipes need to be attached.
2. Fix appropriate sized reducing connection to the Tee
3. Connect capillary tube or drop pipe to the reducing connector
4. Run the capillary or the drop pipe to the required sampling point
5. Attach sampling point fitting

Figure 14 - Inter-beam sampling using a walking stick
Concealed Sampling

Concealed sampling is used when there is a requirement for aesthetics or for security. Capillary tubes and drop pipes are normally used for concealed sampling. The ceiling void is used to lay the sampling pipe. Capillary tubes are routed to the required location and penetrate the ceiling, generally using something to hide the tube. The end of the tube is either restricted with a capillary cap or left fully open.

In situations where discreet sampling is required to maintain the aesthetics of the protected area, the capillary tube can be concealed behind a ceiling rose, wound down a chandelier support chain or can sit flush with the ceiling cornice. The sampling holes can be concealed by using a flush sampling point or a sampling point inserted inside the end of the sampling pipe.

1. Follow the guidelines for In-Ceiling Installation on page 12
2. Then follow the guidelines for Capillary Tubes and Drop Pipes Installation on page 14

Figure 15 - Concealed sampling points

Return Air Grilles and Air Ducts

Return Air Grilles

Return air grille sampling is used to monitor the grille air drawn to an exhaust ventilation system or to an air handling unit (AHU). The pipe network design will specify where return air sampling is required.

Figure 16 - Return air grille sampling

The guidelines that need to be considered in a return air grille sampling installation:
1. Follow the guidelines specified in *Ceilings and Floors* on page 11 then use the guidelines below.
2. Fix pipe mounting clips or pipe clamps with standoff posts over the return air grille.
3. Sampling pipes on return air grilles having high velocity air flows which may require mounting on standoff posts to keep the sampling pipe 25 mm to 200 mm (1 to 8 inches) away from the grille. Refer to the pipe network design for requirements.

![Figure 17 - Pipe position on a return air grille](image)

Return air grilles may be removed and replaced for maintenance. To ensure the orientation of sampling holes are maintained at the correct angle once the air grille is replaced:

- Cut sampling pipe of specified diameter to the length of the air grille
- Fix mounting clips or pipe clamps with standoff posts on either side of the air grille
4. Connect the sampling pipe using socket unions and do not glue them in place. The socket unions must be between the end of the air grille and the mounting clips or pipe clamps, see Figure 17, “Pipe position on a return air grille,” on page 16 for details.

Generally, a VLP or VLS detector should not monitor more than four AHUs, a VLC should not monitor more than two, and a VLF should not monitor more than one AHU.

![Figure 18 - Sampling over a return air grille](image)

5. Drill sampling holes as specified in the design documents.
6. Return air duct pipework must always have an end cap without a hole in it.
Duct Sampling and Condensation

Duct sampling allows you to test the return air from within an air duct. The sampling pipe is connected to a sampling probe to sample the air from within the duct. To avoid the potential effects of pressure differentials the air is exhausted back into the duct through an exhaust probe. The exhaust probe holes must also face the same direction as the intake probe holes.

The detector must be installed in the inverted position when sampling air from ducts. This is done because condensation may occur when the dew point temperature of the duct air is at or above the ambient temperature of the detector. This usually occurs when the temperature of the humid duct air is higher than the ambient temperature of the detector.

In this situation, longer pipe runs outside the duct should be used. Initial regular inspections must be carried out to determine whether there is condensation forming inside the pipes, especially during the winter season. Smoke tests should be conducted regularly in the first two months of installation.

Duct Installation Considerations

- In air-return ducts, the detector must be installed where the static pressure is not below -ve 500Pa and the air duct velocity is not above 20 m/sec (4,000 fpm). Static pressure is the pressure generated by the fan to deliver a specific flow-rate in the duct. Static pressure is a function of the flow-rate and impedance of the duct system. Convert to volumetric flow rate.
 \[(m^3/h) = \text{Velocity} \times \text{Duct Area}\]
- Always vent the exhaust pipe back into the duct even when the duct pressure is sometimes very small (e.g. less than 20Pa). This is because the duct system operation may change in the future.
- In air-return (-ve pressure) ducts, the detector must be installed away from any fans and closer to air vents; this reduces large –ve pressures.
- For air-return (-ve pressure) ducts, the detector must be installed before humidifiers, heating coils, and filters.
- In air-return (-ve pressure) ducts, the detector must be installed before fresh air intakes.
- Do not sample from multiple ducts (i.e. use a different detector for each duct).
- Do not sample duct and ambient environments together.
- For a detector mounted on the duct, ensure no tangible vibrations exist when the duct system is in full operation. If vibrations exist, insert visco-elastic foam between the detector’s mounting bracket and the external surface of the duct.

Probe Installation

The differential pressure across the inlet and exhaust pipe needs to be kept within ±10Pa in the presence of airflow, regardless of duct air velocity.

Differential pressure is created by the orientation of the holes on both pipes in relation to the duct flow. This differential pressure across the inlet and exhaust pipes will either aid or impede the flow through the detector.

A very low differential pressure ensures the normal operation of the detector. To achieve this, perform the following steps:

1. Ensure the duct system is operating and airflow is present in the duct.
2. Drill holes in the inlet and exhaust pipes as required, draw a line along the holes to the end of the pipe.
3. Insert the pipes in the duct, and rotate the pipe until the line indicates that the holes are facing into the airflow
4. Using the Manometer testing (page 18) or flexible U testing (page 18) methods to minimize the pressure differential.
5. When you are happy with the pipe orientation, mark the position of the pipes’ orientation on the duct and pipes.
6. Secure the pipe installation and run pipe to the detector.
Face the holes of both pipes to the airflow and slightly rotate the pipes so the pressure reading is within ±10Pa. Mark the position of the pipes’ orientation on the pipe and the outside of the duct. Connect the detector after securing the pipe network.

Figure 19 - Manometer testing

Connect the pipe ends to a U-shape clear flexible tube that contains water.

Figure 20 - Flexible U-tube testing

Face the holes on both pipes to the airflow and slightly rotate the pipes so the water level on both sides of the tube is the same. Mark the position of the pipes’ orientation on the pipe and the side of the duct. Connect the detector after securing the pipe network.
Sampling probe installation:

1. Drill holes through the sides of the duct so that the intake probe can be inserted across the width of the duct. The holes should be in the middle of the duct.
2. Drill the required number (and size) of sampling holes in the probe. Make a mark on the end of the probe in line with the holes.
3. Insert the probe through the duct, and attach an end-cap without a hole in it.
4. Use the mark on the end of the probe to ensure that the holes on the probe face 20° to 45° above or below the direction of the airflow.
5. Ensure that the holes where the intake probe enters and exits the duct are properly sealed and made air tight.
6. Join the sampling probe to the sampling pipe network running to the detector.

Legend

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Air intake probe</td>
</tr>
<tr>
<td>B</td>
<td>Air exhaust probe</td>
</tr>
<tr>
<td>C</td>
<td>Grommets / sealed</td>
</tr>
<tr>
<td>D</td>
<td>Air duct</td>
</tr>
<tr>
<td>E</td>
<td>End caps without a hole</td>
</tr>
</tbody>
</table>

Figure 21 - Return air duct sampling
Exhaust probe installation:

Always install the sampling probe, then install the exhaust probe.

1. On the same side of the duct that the sampling probe was inserted you will need to drill another hole for the exhaust probe. The hole should be:
 • Downwind of the sampling probe by at least 300 mm (1 ft.)
 • A quarter the height of the duct up from the bottom. This is done so that the air hitting the exhaust probe has not been disturbed by hitting the sampling probe first.

2. Drill the same number (and size) of sampling holes used in the sampling probe. Make a mark on the end of the probe in line with the holes.

3. Attach an end-cap (without a hole), and insert the probe a third the way into the duct.

4. Use the mark on the end of the probe to ensure that the holes on the probe face 20° to 45° above or below the direction of the airflow. These holes need to face the same direction as those used in the sampling probe.

5. Ensure that the hole where the exhaust probe enters the duct is properly sealed and made air tight

6. Join the exhaust probe to the exhaust pipe network running from the detector.

Cabinet and Rack Detection

[Legend diagram]

Figure 22 - The location of probes in duct

Figure 23 - In-cabinet sampling using capillaries & drop pipes
In-Cabinet Installation

In-Cabinet sampling uses capillary tubes or drop pipes to sample the air from within a cabinet, such as a switching console or an equipment rack. A capillary tube can be inserted into the cabinet either from the top of the cabinet, or from the under floor void.

Warning: Ensure that the power is switched off prior to commencing work on the cabinet. Make sure that there are no electrical wires that may be damaged while drilling the hole.

Caution: Check to see that the dust from drilling the holes will not damage the equipment.

In-Cabinet sampling installation from the top:

1. Determine the entry point into the cabinet - Drill an appropriate size hole in the cabinet top, or use an existing cable entry port.
2. Install the sampling pipe using Tee adaptors where the capillary tubes or drop pipes are to be run to the cabinet.
3. Attach appropriate sized reducing connection to the Tee.
4. Attach capillary tube or drop pipes to the reducing connector.
5. Run the capillary or the drop pipe into the cabinet.
6. Unless specified otherwise, insert the capillary tube or drop pipe just below the interior of the cabinet top to a depth of 25 mm to 50 mm (1 to 2 inches).
7. Attach sampling point fitting to ensure the correct sampling hole size.

In-Cabinet sampling installation from under the floor:

Warning: Ensure that the Power is switched off prior to commencing work on the cabinet. Make sure that there are no electrical wires that may be damaged while drilling the hole.

Caution: Check to see that the dust from drilling the holes will not damage the equipment.

1. Determine the entry point into the cabinet - Drill an appropriate size hole in the cabinet floor, or use an existing cable entry port.
2. Install a sampling pipe as per the guidelines for *Floor Void Installation* on page 13, but do not drill sampling holes unless specified in the pipe network design or IDP specifications.
3. Use Tee adaptors where the capillary tubes or drop pipes need to be attached.
4. Fix appropriate sized reducing connection to the Tee.
5. Attach capillary tube or drop pipe to the reducing connector.
6. Run the capillary or the drop pipe into the cabinet.
7. Ensure that the capillary tube or drop pipe runs right to the top of the cabinet and is supported there by a mounting clip or pipe clamp.
8. Unless specified otherwise, the sampling hole should be 25 mm to 50 mm (1 to 2 inches) below the top of the cabinet.
9. Attach sampling point fitting to ensure the correct sampling hole size.
On-Cabinet

The sampling pipe is installed directly over the cabinets that need monitoring. The sampling holes are drilled so that they face into the air stream from the cabinet. Each cabinet must have at least one dedicated sampling hole. The installation guidelines for on-cabinet sampling are the same as for Return Air Grilles and Air Ducts on page 15.

Figure 24 - On-cabinet sampling
In Rack Installation

In rack installations are typically found in warehouses and other areas using high-bay racking. The sampling pipe is installed in between two racks along their length, or within the racking. Pipes may need to be fitted at different heights to enable effective detection of any incipient smoke at different levels. Instructions for installing the sampling pipe:

1. Whenever possible lay the pipe between two racks so that it cannot be accidentally damaged as things are moved into and out of the racks. Typically this would be along the inside of the horizontal and vertical support beams and posts.
2. Secure the sampling pipe to the support beams and post using self locking ties.
3. Drill sampling holes as specified in the pipe network design or the IDP following the guidelines for Drilling Sampling Holes on page 10.
4. Connect, but do not glue or bond the sampling pipes to the detector. There must not be any bends in last 300 mm (1 ft.) running into the detector.
5. Update the grid overlay and IDP with any changes made to the original plans.
6. After all the tests have been completed bond the pipes together using the appropriate cement solvent. Do not glue the pipes to the detector pipe inlet.
7. Use appropriate labels and tag the sampling pipe and sampling holes.
Open Spaces

Vertical Sampling Pipe Installation

Vertical installation of sampling pipes is used to sample air at different layers to offset the effects of stratification. Vertical sampling is typically used in areas that have high ceilings. In addition to On-ceiling sampling, pipes are also installed vertically ensuring that air can be sampled at different heights. To install Vertical sampling pipes follow the guidelines for *Ceilings and Floors* on page 11.

![Figure 27 - Vertical sampling](image)

<table>
<thead>
<tr>
<th>Legend</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Detail of sampling hole</td>
</tr>
<tr>
<td>B</td>
<td>Stratified smoke layer</td>
</tr>
<tr>
<td>C</td>
<td>Vertical sampling holes</td>
</tr>
</tbody>
</table>

7 Recording Pipe Network Details

Once you have finished installing the pipe network you will need to update the design documents with any modifications. It is critical that you record any changes from the original plan for the commissioning and testing phases at the site.

If significant changes to the original plan were required you should retest the new proposed pipe network before installing it. Failure to retest the design with ASPIRE2 may lead to the installation of a pipe network that does not meet customer and local fire authority codes and standards.

After updating the design documents you must give a copy to the person who will be commissioning the system. The details of the person who will be commissioning can usually be found in the ASPIRE2 Installation Data Pack (IDP).

www.xtralis.com
Index

Numerics

45° bend ... 5
90° elbow ... 5

A

aspirating smoke detection 3

B

Bending Pipes 10
Bending springs 10
Bends ... 5
Bonding .. 8, 9

C

Capillary Tubes 7
Cementing Pipes 9
Cementing pipes 9
Components 4
Condensation 17
Conical sampling points 7
Contact Us ii
Conventions ii
Couplings 5
Cutting Pipes 8

D

Drilling .. 10
Drop Pipes 7

E

Elbows .. 5
End Caps .. 6
Expansion Joints 5
Expansion joints 9

F

Flush sampling point 7
Flush Sampling Points 7

G

gluing pipes 9

I

ID Pipe ... 4
Installation 4

J

Joining .. 8
J-Pieces .. 6

M

Miniature sampling point 7
Miniature sampling point label 8
Miniature Sampling Points 7
Mounting .. 9
Mounting Fixtures 7

Contact Us ii
Conventions ii
Couplings 5
Cutting Pipes 8

www.xtralis.com